Inhibition of Eicosanoid Degradation Mitigates Fibrosis of the Heart

Author:

Rubino Marcello12,Travers Joshua G.12ORCID,Headrick Alaina L.12,Enyart Blake T.12ORCID,Lemieux Madeleine E.3ORCID,Cavasin Maria A.12,Schwisow Jessica A.1,Hardy Elizabeth J.12,Kaltenbacher Keenan J.12,Felisbino Marina B.12,Jonas Eric1ORCID,Ambardekar Amrut V.12ORCID,Bristow Michael R.12ORCID,Koch Keith A.12ORCID,McKinsey Timothy A.12ORCID

Affiliation:

1. From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.)

2. Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)

3. Bioinfo, Plantagenet, ON, Canada (M.E.L.).

Abstract

Background: Organ fibrosis due to excessive production of extracellular matrix by resident fibroblasts is estimated to contribute to >45% of deaths in the Western world, including those due to cardiovascular diseases such as heart failure. Here, we screened for small molecule inhibitors with a common ability to suppress activation of fibroblasts across organ systems. Methods: High-content imaging of cultured cardiac, pulmonary, and renal fibroblasts was used to identify nontoxic compounds that blocked induction of markers of activation in response to the profibrotic stimulus, transforming growth factor-β1. SW033291, which inhibits the eicosanoid-degrading enzyme, 15-hydroxyprostaglandin dehydrogenase, was chosen for follow-up studies with cultured adult rat ventricular fibroblasts and human cardiac fibroblasts (CF), and for evaluation in mouse models of cardiac fibrosis and diastolic dysfunction. Additional mechanistic studies were performed with CFs treated with exogenous eicosanoids. Results: Nine compounds, including SW033291, shared a common ability to suppress transforming growth factor-β1–mediated activation of cardiac, pulmonary, and renal fibroblasts. SW033291 dose-dependently inhibited transforming growth factor-β1–induced expression of activation markers (eg, α-smooth muscle actin and periostin) in adult rat ventricular fibroblasts and normal human CFs, and reduced contractile capacity of the cells. Remarkably, the 15-hydroxyprostaglandin dehydrogenase inhibitor also reversed constitutive activation of fibroblasts obtained from explanted hearts from patients with heart failure. SW033291 blocked cardiac fibrosis induced by angiotensin II infusion and ameliorated diastolic dysfunction in an alternative model of systemic hypertension driven by combined uninephrectomy and deoxycorticosterone acetate administration. Mechanistically, SW033291-mediated stimulation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling was required for the compound to block CF activation. Of the 12 exogenous eicosanoids that were tested, only 12(S)-hydroxyeicosatetraenoic acid, which signals through the G protein-coupled receptor, GPR31, recapitulated the suppressive effects of SW033291 on CF activation. Conclusions: Inhibition of degradation of eicosanoids, arachidonic acid-derived fatty acids that signal through G protein-coupled receptors, is a potential therapeutic strategy for suppression of pathological organ fibrosis. In the heart, we propose that 15-hydroxyprostaglandin dehydrogenase inhibition triggers CF-derived autocrine/paracrine signaling by eicosanoids, including 12(S)-hydroxyeicosatetraenoic acid, to stimulate extracellular signal-regulated kinase 1/2 and block conversion of fibroblasts into activated cells that secrete excessive amounts of extracellular matrix and contribute to heart failure pathogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3