Fibrosis in Pathology of Heart and Kidney: From Deep RNA-Sequencing to Novel Molecular Targets

Author:

Schreibing Felix12ORCID,Anslinger Teresa M.12ORCID,Kramann Rafael123ORCID

Affiliation:

1. Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany.

2. Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany.

3. Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands (R.K.).

Abstract

Diseases of the heart and the kidney, including heart failure and chronic kidney disease, can dramatically impair life expectancy and the quality of life of patients. The heart and kidney form a functional axis; therefore, functional impairment of 1 organ will inevitably affect the function of the other. Fibrosis represents the common final pathway of diseases of both organs, regardless of the disease entity. Thus, inhibition of fibrosis represents a promising therapeutic approach to treat diseases of both organs and to resolve functional impairment. However, despite the growing knowledge in this field, the exact pathomechanisms that drive fibrosis remain elusive. RNA-sequencing approaches, particularly single-cell RNA-sequencing, have revolutionized the investigation of pathomechanisms at a molecular level and facilitated the discovery of disease-associated cell types and mechanisms. In this review, we give a brief overview over the evolution of RNA-sequencing techniques, summarize most recent insights into the pathogenesis of heart and kidney fibrosis, and discuss how transcriptomic data can be used, to identify new drug targets and to develop novel therapeutic strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3