A Cell-Based Phenotypic Assay to Identify Cardioprotective Agents

Author:

Guo Stephanie1,Olm-Shipman Adam1,Walters Andrew1,Urciuoli William R.1,Devito Stefanie1,Nadtochiy Sergiy M.1,Wojtovich Andrew P.1,Brookes Paul S.1

Affiliation:

1. From the School of Medicine (S.G., A.W.), the Department of Pharmacology and Physiology (A.O.-S.), the Department of Anesthesiology (W.R.U., S.M.N., A.P.W., P.S.B.), and the Department of Biochemistry (S.D.), University of Rochester Medical Center, Rochester, NY.

Abstract

Rationale: Tissue ischemia/reperfusion (IR) injury underlies several leading causes of death such as heart-attack and stroke. The lack of clinical therapies for IR injury may be partly due to the difficulty of adapting IR injury models to high-throughput screening (HTS). Objective: To develop a model of IR injury that is both physiologically relevant and amenable to HTS. Methods and Results: A microplate-based respirometry apparatus was used. Controlling gas flow in the plate head space, coupled with the instrument's mechanical systems, yielded a 24-well model of IR injury in which H9c2 cardiomyocytes were transiently trapped in a small volume, rendering them ischemic. After initial validation with known protective molecules, the model was used to screen a 2000-molecule library, with post-IR cell death as an end point. P o 2 and pH monitoring in each well also afforded metabolic data. Ten protective, detrimental, and inert molecules from the screen were subsequently tested in a Langendorff-perfused heart model of IR injury, revealing strong correlations between the screening end point and both recovery of cardiac function (negative, r 2 =0.66) and infarct size (positive, r 2 =0.62). Relationships between the effects of added molecules on cellular bioenergetics and protection against IR injury were also studied. Conclusions: This novel cell-based assay can predict either protective or detrimental effects on IR injury in the intact heart. Its application may help identify therapeutic or harmful molecules.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3