A New Level of Complexity

Author:

Boettger Thomas1,Braun Thomas1

Affiliation:

1. From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany.

Abstract

The discovery of the regulatory role of noncoding RNAs, and micro (mi)RNAs in particular, has added a new layer of complexity to our understanding of cardiovascular development. miRNAs regulate and modulate various steps of cardiovascular morphogenesis, cell proliferation, differentiation, and phenotype modulation. miRNAs simultaneously regulate multiple targets, and many miRNAs can bind to the same target, allowing for a complex pattern of regulation of gene expression. miRNA families are continuously added during evolution paralleling the increased complexity of the cardiovascular system in vertebrates compared with invertebrates. Several lines of evidence suggest that the appearance of miRNAs is at least in part responsible for the formation of complex organ systems and stable regulatory mechanisms in vertebrates. We review the current understanding of miRNAs during cardiovascular development. Further progress in this area will help to decipher quantitative changes in gene expression that provide robustness to cellular phenotypes and regulatory options to diseases processes. miRNAs might also provide clues to better understand congenital heart defects, which are the most common birth defects in human newborns.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3