Cardiomyocytes Obtained From Induced Pluripotent Stem Cells With Long-QT Syndrome 3 Recapitulate Typical Disease-Specific Features In Vitro

Author:

Malan Daniela1,Friedrichs Stephanie1,Fleischmann Bernd K.1,Sasse Philipp1

Affiliation:

1. From the Institute of Physiology I, Life & Brain Center, University of Bonn, Germany.

Abstract

Rationale: Current approaches for the investigation of long-QT syndromes (LQTS) are mainly focused on identification of the mutation and its characterization in heterologous expression systems. However, it would be extremely helpful to be able to characterize the pathophysiological effects of mutations and to screen drugs in cardiomyocytes. Objective: The aim of this study was to establish as a proof of principle the disease-specific cardiomyocytes from a mouse model with LQTS 3 by use of induced pluripotent stem (iPS) cells and to demonstrate that the mutant cardiomyocytes display the characteristic pathophysiological features in vitro. Methods and Results: We generated disease-specific iPS cells from a mouse model with a human mutation of the cardiac Na + channel that causes LQTS 3. The control and LQTS 3–specific iPS cell lines were pluripotent and could be differentiated into spontaneously beating cardiomyocytes. Patch-clamp measurements of LQTS 3–specific cardiomyocytes showed the biophysical effects of the mutation on the Na + current, with faster recovery from inactivation and larger late currents than observed in controls. Moreover, LQTS 3–specific cardiomyocytes had prolonged action potential durations and early afterdepolarizations at low pacing rates, both of which are classic features of the LQTS 3 mutation. Conclusions: We demonstrate that disease-specific iPS cell–derived cardiomyocytes from an LQTS 3 mouse model with a human mutation recapitulate the typical pathophysiological phenotype in vitro. Thus, this method is a powerful tool to investigate disease mechanisms in vitro and to perform patient-specific drug screening.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3