Protein Kinase D Is a Key Regulator of Cardiomyocyte Lipoprotein Lipase Secretion After Diabetes

Author:

Kim Min Suk1,Wang Fang1,Puthanveetil Prasanth1,Kewalramani Girish1,Hosseini-Beheshti Elham1,Ng Natalie1,Wang Yanni1,Kumar Ujendra1,Innis Sheila1,Proud Christopher G.1,Abrahani Ashraf1,Rodrigues Brian1

Affiliation:

1. From the Faculty of Pharmaceutical Sciences (M.S.K., F.W., P.P., G.K., E.H., N.N., U.K., A.A., B.R.), the Department of Pediatrics (S.I.), and the Department of Biochemistry and Molecular Biology (Y.W., C.G.P.), UBC, Vancouver, Canada.

Abstract

The diabetic heart switches to exclusively using fatty acid (FA) for energy supply and does so by multiple mechanisms including hydrolysis of lipoproteins by lipoprotein lipase (LPL) positioned at the vascular lumen. We determined the mechanism that leads to an increase in LPL after diabetes. Diazoxide (DZ), an agent that decreases insulin secretion and causes hyperglycemia, induced a substantial increase in LPL activity at the vascular lumen. This increase in LPL paralleled a robust phosphorylation of Hsp25, decreasing its association with PKCδ, allowing this protein kinase to phosphorylate and activate protein kinase D (PKD), an important kinase that regulates fission of vesicles from the golgi membrane. Rottlerin, a PKCδ inhibitor, prevented PKD phosphorylation and the subsequent increase in LPL. Incubating control myocytes with high glucose and palmitic acid (Glu+PA) also increased the phosphorylation of Hsp25, PKCδ, and PKD in a pattern similar to that seen with diabetes, in addition to augmenting LPL activity. In myocytes in which PKD was silenced or a mutant form of PKCδ was expressed, high Glu+PA were incapable of increasing LPL. Moreover, silencing of cardiomyocyte Hsp25 allowed phorbol 12-myristate 13-acetate to elicit a significant phosphorylation of PKCδ, an appreciable association between PKCδ and PKD, and a vigorous activation of PKD. As these cells also demonstrated an additional increase in LPL, our data imply that after diabetes, PKD control of LPL requires dissociation of Hsp25 from PKCδ, association between PKCδ and PKD, and vesicle fission. Results from this study could help in restricting cardiac LPL translocation, leading to strategies that overcome contractile dysfunction after diabetes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3