Monocyte Single-Cell Multimodal Profiling in Cardiovascular Disease Risk States

Author:

Bashore Alexander C.12ORCID,Xue Chenyi12,Kim Eunyoung12,Yan Hanying3ORCID,Zhu Lucie Y.12ORCID,Pan Huize4ORCID,Kissner Michael5,Ross Leila S.12ORCID,Zhang Hanrui12ORCID,Li Mingyao3ORCID,Reilly Muredach P.126ORCID

Affiliation:

1. Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.).

2. Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York.

3. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.).

4. Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.P.).

5. Columbia Stem Cell Initiative, Department of Genetics and Development (M.K.), Columbia University Irving Medical Center, New York.

6. Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York (M.P.R.).

Abstract

BACKGROUND: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS: We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCII hi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII + CD275 + MHCII hi , CD42b + monocyte-platelet aggregates, CD16 + CD99 nonclassical monocytes, and CD99 + classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3