Endothelial PTP1B Deletion Promotes VWF Exocytosis and Venous Thromboinflammation

Author:

Zifkos Konstantinos1ORCID,Bochenek Magdalena L.12ORCID,Gogiraju Rajinikanth2ORCID,Robert Stéphane3,Pedrosa Denise1ORCID,Kiouptsi Klytaimnistra1ORCID,Moiko Kateryna2ORCID,Wagner Mathias4,Mahfoud Felix5ORCID,Poncelet Philippe6,Münzel Thomas2ORCID,Ruf Wolfram1ORCID,Reinhardt Christoph1ORCID,Panicot-Dubois Laurence3ORCID,Dubois Christophe3ORCID,Schäfer Katrin2ORCID

Affiliation:

1. Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany.

2. Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany.

3. Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.).

4. Institute of Pathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany (M.W.).

5. Department of Internal Medicine III, Cardiology, Angiology and Internal Intensive Care Medicine, Saarland University Hospital and Saarland University, Homburg, Germany (F.M.).

6. BioCytex, Marseille, France (P.P.).

Abstract

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT 2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V + procoagulant endothelial CD62E + (E-selectin) and neutrophil (Ly6G + ) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3