The ShcA Phosphotyrosine Docking Protein Uses Distinct Mechanisms to Regulate Myocyte and Global Heart Function

Author:

Vanderlaan Rachel D.1,Hardy W. Rod1,Kabir M. Golam1,Pasculescu Adrian1,Jones Nina1,deTombe Pieter P.1,Backx Peter H.1,Pawson Tony1

Affiliation:

1. From the Samuel Lunenfeld Research Institute at Mount Sinai Hospital (R.D.V., W.R.H., A.P., N.J., T.P.), Toronto, Ontario, Canada; Department of Molecular Genetics (R.D.V., W.R.H., T.P.), University of Toronto, Ontario, Canada; Heart and Stroke/Richard Lewar Research Centre of Excellence (R.D.V., M.G.K., P.H.B.), Toronto, Ontario, Canada; Department of Biophysics (P.P.d.), University of Illinois at Chicago; and Department of Physiology (P.H.B.), University of Toronto, Ontario, Canada. Present...

Abstract

Rationale: Although tyrosine kinases (TKs) are important for cardiac function, their relevant downstream targets in the adult heart are unknown. The ShcA docking protein binds specific phosphotyrosine (pTyr) sites on activated TKs through its N-terminal pTyr-binding (PTB) and C-terminal SH2 domains and stimulates downstream pathways through motifs such as pTyr sites in its central CH1 region. Therefore, ShcA could be a potential hub for downstream TK signaling in the myocardium. Objective: To define the role of ShcA, a TK scaffold, in the adult heart using a myocardial-specific knockout of murine ShcA (ShcA CKO) and domain knock-in models. Methods and Results: ShcA CKO mice developed a dilated cardiomyopathy phenotype involving impaired systolic function with enhanced cardiomyocyte contractility. This uncoupling of global heart and intrinsic myocyte functions was associated with altered collagen and extracellular matrix compliance properties, suggesting disruption of mechanical coupling. In vivo dissection of ShcA signaling properties revealed that selective inactivation of the PTB domain in the myocardium had effects resembling those seen in ShcA CKO mice, whereas disruption of the SH2 domain caused a less severe cardiac phenotype. Downstream signaling through the CH1 pTyr sites was dispensable for baseline cardiac function but necessary to prevent adverse remodeling after hemodynamic overload. Conclusions: These data demonstrate a requirement for TK-ShcA PTB domain signaling to maintain cardiac function. In addition, analysis of the SH2 domain and CH1 pTyr sites reveals that ShcA mediates pTyr signaling in the adult heart through multiple distinct signaling elements that control myocardial functions and response to stresses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3