Pannexin1 Regulates α1-Adrenergic Receptor– Mediated Vasoconstriction

Author:

Billaud Marie1,Lohman Alexander W.1,Straub Adam C.1,Looft-Wilson Robin1,Johnstone Scott R.1,Araj Christina A.1,Best Angela K.1,Chekeni Faraaz B.1,Ravichandran Kodi S.1,Penuela Silvia1,Laird Dale W.1,Isakson Brant E.1

Affiliation:

1. From the Robert M. Berne Cardiovascular Research Center (M.B., A.W.L., A.C.S., S.R.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biological Physics (A.W.L., B.E.I.), and Beirne B. Carter Center for Immunology Research (F.B.C., K.S.R.), University of Virginia School of Medicine, Charlottesville, VA; Department of Kinesiology and Health Sciences (R.L.-W., C.A.A.), College of William and Mary, Williamsburg, VA; and Department of Anatomy and Cell Biology (S.P., D.W.L.), University of...

Abstract

Rationale: The coordination of vascular smooth muscle cell constriction plays an important role in vascular function, such as regulation of blood pressure; however, the mechanism responsible for vascular smooth muscle cell communication is not clear in the resistance vasculature. Pannexins (Panx) are purine-releasing channels permeable to the vasoconstrictor ATP and thus may play a role in the coordination of vascular smooth muscle cell constriction. Objective: We investigated the role of pannexins in phenylephrine- and KCl-mediated constriction of resistance arteries. Methods and Results: Western blot, immunohistochemistry, and immunogold labeling coupled to scanning and transmission electron microscopy revealed the presence of Panx1 but not Panx2 or Panx3 in thoracodorsal resistance arteries. Functionally, the contractile response of pressurized thoracodorsal resistance arteries to phenylephrine was decreased significantly by multiple Panx inhibitors (mefloquine, probenecid, and 10 Panx1), ectonucleotidase (apyrase), and purinergic receptor inhibitors (suramin and reactive blue-2). Electroporation of thoracodorsal resistance arteries with either Panx1-green fluorescent protein or Panx1 small interfering RNA showed enhanced and decreased constriction, respectively, in response to phenylephrine. Lastly, the Panx inhibitors did not alter constriction in response to KCl. This result is consistent with coimmunoprecipitation experiments from thoracodorsal resistance arteries, which suggested an association between Panx1 and α1D-adrenergic receptor. Conclusions: Our data demonstrate for the first time a key role for Panx1 in resistance arteries by contributing to the coordination of vascular smooth muscle cell constriction and possibly to the regulation of blood pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3