Compartmentalization of β-Adrenergic Signals in Cardiomyocytes

Author:

Xiang Yang K.1

Affiliation:

1. From the Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana Champaign, Urbana, IL.

Abstract

Activation of adrenergic receptors (AR) represents the primary mechanism to increase cardiac performance under stress. Activated βAR couple to Gs protein, leading to adenylyl cyclase-dependent increases in secondary-messenger cyclic adenosine monophosphate (cAMP) to activate protein kinase A. The increased protein kinase A activities promote phosphorylation of diversified substrates, ranging from the receptor and its associated partners to proteins involved in increases in contractility and heart rate. Recent progress with live-cell imaging has drastically advanced our understanding of the βAR-induced cAMP and protein kinase A activities that are precisely regulated in a spatiotemporal fashion in highly differentiated myocytes. Several features stand out: membrane location of βAR and its associated complexes dictates the cellular compartmentalization of signaling; βAR agonist dose-dependent equilibrium between cAMP production and cAMP degradation shapes persistent increases in cAMP signals for sustained cardiac contraction response; and arrestin acts as an agonist dose-dependent master switch to promote cAMP diffusion and propagation into intracellular compartments by sequestrating phosphodiesterase isoforms associated with the βAR signaling cascades. These features and the underlying molecular mechanisms of dynamic regulation of βAR complexes with adenylyl cyclase and phosphodiesterase enzymes and the implication in heart failure are discussed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3