Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia

Author:

Cai Yujun1,Nagel David J.1,Zhou Qian1,Cygnar Katherine D.1,Zhao Haiqing1,Li Faqian1,Pi Xinchun1,Knight Peter A.1,Yan Chen1

Affiliation:

1. From the Department of Medicine, Aab Cardiovascular Research Institute (Y.C., D.J.N., Q.Z., C.Y.), Department of Pathology and Laboratory Medicine (F.L.), and Department of Surgery (P.A.K.), School of Medicine and Dentistry, University of Rochester, NY; Department of Biology, Johns Hopkins University, Baltimore, MD (K.D.C., H.Z.); and Department of Medicine, Athero and Lipo Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P.).

Abstract

Rationale: Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, postangioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). Objective: Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. Methods and Results: We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. In addition, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF receptor β (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with low-density lipoprotein receptor–related protein-1 and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an low-density lipoprotein receptor–related protein-1–dependent manner. A transmembrane adenylyl cyclase cAMP-dependent protein kinase cascade modulated by PDE1C is critical in regulating PDGFRβ degradation. Conclusions: These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome-dependent PDGFRβ protein degradation via low-density lipoprotein receptor–related protein-1.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3