CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart

Author:

Schoger Eric12,Carroll Kelli J.3,Iyer Lavanya M.12,McAnally John R.3,Tan Wei3,Liu Ning3,Noack Claudia12,Shomroni Orr4,Salinas Gabriela4,Groß Julia5,Herzog Nicole5,Doroudgar Shirin5,Bassel-Duby Rhonda3,Zimmermann Wolfram-H.12,Zelarayán Laura C.12

Affiliation:

1. From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany

2. DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)

3. Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)

4. NGS-Integrative Genomics (NIG) Institute Human Genetics (O.S., G.S.), University Medical Center Goettingen, Georg-August University, Germany

5. Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Germany (J.G., N.H., S.D.)

Abstract

Rationale: Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. Objective: We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. Methods and Results: A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d , which when overexpressed, led to hypertrophy and heart failure, and Klf15 , which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15 , we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. Conclusions: The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3