Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage

Author:

Joerk Alexander12,Ritter Marcel,Langguth Niklas1,Seidel Raphael Andreas34,Freitag Diana5,Herrmann Karl-Heinz6,Schaefgen Anna1,Ritter Marvin1,Günther Milena1,Sommer Charline1,Braemer Dirk1,Walter Jan5,Ewald Christian7,Kalff Rolf5,Reichenbach Jürgen Rainer6,Westerhausen Matthias4,Pohnert Georg4,Witte Otto Wilhelm1,Holthoff Knut1

Affiliation:

1. From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany

2. Research Program Else Kröner-Forschungskolleg AntiAge (A.J.), Jena University Hospital, Germany

3. Department of Anesthesiology and Intensive Care Medicine / Center for Sepsis Control and Care (R.A.S.), Jena University Hospital, Germany

4. Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany (Marcel Ritter, R.A.S., M.W., G.P.)

5. Department of Neurosurgery (D.F., J.W., R.K.), Jena University Hospital, Germany

6. Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Germany (K.-H.H., J.R.R.)

7. Department of Neurosurgery, Brandenburg Medical School, Campus Brandenburg an der Havel, Germany (C.E.).

Abstract

Rationale: Delayed ischemic neurological deficit is the most common cause of neurological impairment and unfavorable prognosis in patients with subarachnoid hemorrhage (SAH). Despite the existence of neuroimaging modalities that depict the onset of the accompanying cerebral vasospasm, preventive and therapeutic options are limited and fail to improve outcome owing to an insufficient pathomechanistic understanding of the delayed perfusion deficit. Previous studies have suggested that BOXes (bilirubin oxidation end products), originating from released heme surrounding ruptured blood vessels, are involved in arterial vasoconstriction. Recently, isolated intermediates of oxidative bilirubin degradation, known as PDPs (propentdyopents), have been considered as potential additional effectors in the development of arterial vasoconstriction. Objective: To investigate whether PDPs and BOXes are present in hemorrhagic cerebrospinal fluid and involved in the vasoconstriction of cerebral arterioles. Methods and Results: Via liquid chromatography/mass spectrometry, we measured increased PDP and BOX concentrations in cerebrospinal fluid of SAH patients compared with control subjects. Using differential interference contrast microscopy, we analyzed the vasoactivity of PDP isomers in vitro by monitoring the arteriolar diameter in mouse acute brain slices. We found an arteriolar constriction on application of PDPs in the concentration range that occurs in the cerebrospinal fluid of patients with SAH. By imaging arteriolar diameter changes using 2-photon microscopy in vivo, we demonstrated a short-onset vasoconstriction after intrathecal injection of either PDPs or BOXes. Using magnetic resonance imaging, we observed a long-term PDP-induced delay in cerebral perfusion. For all conditions, the arteriolar narrowing was dependent on functional big conductance potassium channels and was absent in big conductance potassium channels knockout mice. Conclusions: For the first time, we have quantified significantly higher concentrations of PDP and BOX isomers in the cerebrospinal fluid of patients with SAH compared to controls. The vasoconstrictive effect caused by PDPs in vitro and in vivo suggests a hitherto unrecognized pathway contributing to the pathogenesis of delayed ischemic deficit in patients with SAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3