Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and Nuclear Factor-κB–Mediated Inflammation in Macrophages

Author:

Wang Ying1,Wang Gary Z.1,Rabinovitch Peter S.1,Tabas Ira1

Affiliation:

1. From the Departments of Medicine, Physiology, and Cellular Biophysics, and Pathology and Cell Biology (Y.W., I.T.), and Medical Scientist Training Program (G.Z.W.), Columbia University, New York, NY; and Department of Pathology, University of Washington, Seattle, WA (P.S.R.).

Abstract

Rationale: Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type–specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Objective: Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. Methods and Results: We first validated Western diet–fed Ldlr −/− mice as a model of human mitoOS–atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c hi monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β–RelA NF-κB pathway. Conclusions: MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB–mediated entry of monocytes and other inflammatory processes. In view of the mitoOS–atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3