Adiponectin Inhibits Tumor Necrosis Factor-α–Induced Vascular Inflammatory Response via Caveolin-Mediated Ceramidase Recruitment and Activation

Author:

Wang Yajing1,Wang Xiaoliang1,Lau Wayne Bond1,Yuan Yuexing1,Booth David1,Li Jing-Jing1,Scalia Rosario1,Preston Kyle1,Gao Erhe1,Koch Walter1,Ma Xin-Liang1

Affiliation:

1. From the Department of Emergency Medicine (Y.W., X.W., W.B.L., Y.Y., J.-J.L., X.-L.M.) and Department of Pathology (D.B.), Thomas Jefferson University, Philadelphia, PA; and Department of Physiology, Cardiovascular Research Center (R.S., K.P.) and Center for Translational Medicine (E.G., W.K.), Temple University, Philadelphia, PA.

Abstract

Rationale: Anti-inflammatory and vascular protective actions of adiponectin are well recognized. However, many fundamental questions remain unanswered. Objective: The current study attempted to identify the adiponectin receptor subtype responsible for adiponectin’s vascular protective action and investigate the role of ceramidase activation in adiponectin anti-inflammatory signaling. Methods and Results: Adiponectin significantly reduced tumor necrosis factor (TNF)α–induced intercellular adhesion molecule-1 expression and attenuated TNFα-induced oxidative/nitrative stress in human umbilical vein endothelial cells. These anti-inflammatory actions were virtually abolished by adiponectin receptor 1 (AdipoR1-), but not AdipoR2-, knockdown (KD). Treatment with adiponectin significantly increased neutral ceramidase (nCDase) activity (3.7-fold; P <0.01). AdipoR1-KD markedly reduced globular adiponectin–induced nCDase activation, whereas AdipoR2-KD only slightly reduced. More importantly, small interfering RNA-mediated nCDase-KD markedly blocked the effect of adiponectin on TNFα-induced intercellular adhesion molecule-1 expression. AMP-activated protein kinase-KD failed to block adiponectin-induced nCDase activation and modestly inhibited adiponectin anti-inflammatory effect. In contrast, in caveolin-1 KD (Cav1-KD) cells, >87% of adiponectin-induced nCDase activation was lost. Whereas adiponectin treatment failed to inhibit TNFα-induced intercellular adhesion molecule-1 expression, treatment with sphingosine-1-phosphate or SEW (sphingosine-1-phosphate receptor agonist) remained effective in Cav1-KD cells. AdipoR1 and Cav1 colocalized and coprecipitated in human umbilical vein endothelial cells. Adiponectin treatment did not affect this interaction. There is weak basal Cav1/nCDase interaction, which significantly increased after adiponectin treatment. Knockout of AdipoR1 or Cav1 abolished the inhibitory effect of adiponectin on leukocyte rolling and adhesion in vivo. Conclusions: These results demonstrate for the first time that adiponectin inhibits TNFα-induced inflammatory response via Cav1-mediated ceramidase recruitment and activation in an AdipoR1-dependent fashion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3