Role of RyR2 Phosphorylation in Heart Failure and Arrhythmias

Author:

Houser Steven R.1

Affiliation:

1. From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA.

Abstract

This Controversies in Research article discusses the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the Ryanodine Receptor (RyR) at a single serine (RyRS2808) is essential for normal sympathetic regulation of cardiac myocyte contractility and is responsible for the disturbed Ca 2+ regulation that underlies depressed contractility in heart failure. Studies supporting this hypothesis have associated hyperphosphorylation of RyRS2808 and heart failure progression in animals and humans and have shown that a phosphorylation defective RyR mutant mouse (RyRS2808A) does not respond normally to sympathetic agonists and does not exhibit heart failure symptoms after myocardial infarction. Studies to confirm and extend these ideas have failed to support the original data. Experiments from many different laboratories have convincingly shown that PKA-mediated RyRS2808 phosphorylation does not play any significant role in the normal sympathetic regulation of sarcoplasmic reticulum Ca2+ release or cardiac contractility. Hearts and myocytes from RyRS2808A mice have been shown to respond normally to sympathetic agonists, and to increase Ca 2+ influx, Ca 2+ transients, and Ca 2+ efflux. Although the RyR is involved in heart failure–related Ca 2+ disturbances, this results from Ca 2+ -calmodulin kinase II and reactive oxygen species–mediated regulation rather than by RyR2808 phosphorylation. Also, a new study has shown that RyRS2808A mice are not protected from myocardial infarction. Collectively, there is now a clear consensus in the published literature showing that dysregulated RyRs contribute to the altered Ca 2+ regulatory phenotype of the failing heart, but PKA-mediated phosphorylation of RyRS2808 has little or no role in these alterations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3