Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos

Author:

Dunworth William P.1,Cardona-Costa Jose1,Bozkulak Esra Cagavi1,Kim Jun-Dae1,Meadows Stryder1,Fischer Johanna C.1,Wang Yeqi1,Cleaver Ondine1,Qyang Yibing1,Ober Elke A.1,Jin Suk-Won1

Affiliation:

1. From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (W.P.D., J.C.-C., E.C.B., J.-D.K., Y.W., Y.Q., S-W.J.); MRC National Institute for Medical Research, Division of Developmental Biology, Mill Hill, London, United Kingdom (J.C.F., E.A.O.); and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.).

Abstract

Rationale: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. Objective: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. Methods and Results: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell–derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. Conclusions: Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3