NRSF- GNAO1 Pathway Contributes to the Regulation of Cardiac Ca 2+ Homeostasis

Author:

Inazumi Hideaki1,Kuwahara Koichiro2ORCID,Nakagawa Yasuaki1,Kuwabara Yoshihiro3,Numaga-Tomita Takuro4,Kashihara Toshihide5,Nakada Tsutomu6,Kurebayashi Nagomi7,Oya Miku2,Nonaka Miki8,Sugihara Masami9,Kinoshita Hideyuki1,Moriuchi Kenji1,Yanagisawa Hiromu,Nishikimi Toshio110,Motoki Hirohiko2,Yamada Mitsuhiko4ORCID,Morimoto Sachio11ORCID,Otsu Kinya12ORCID,Mortensen Richard M.13ORCID,Nakao Kazuwa14,Kimura Takeshi1

Affiliation:

1. Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.

2. Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto.

3. Center for Accessing Early Promising Treatment, Kyoto University Hospital (Y.K.).

4. Molecular Pharmacology (T.N.-T., M.Y.), School of Medicine, Shinshu University, Matsumoto.

5. Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo (T. Kashihara).

6. Research Center for Supports to Advanced Science (T. Nakada), School of Medicine, Shinshu University, Matsumoto.

7. Cellular and Molecular Pharmacology, School of Medicine, Juntendo University, Tokyo (N.K.).

8. Pain Control Research, The Jikei University School of Medicine (M.N.).

9. Clinical Laboratory Medicine, School of Medicine, Juntendo University, Tokyo (M.S.).

10. Wakakusa Tatsuma Rehabilitation Hospital, Osaka (T. Nishikimi).

11. School of Health Sciences Fukuoka, International University of Health and Welfare, Okawa (S.M.).

12. The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (K.O.).

13. Molecular and Integrative Physiology, University of Michigan (R.M.M.).

14. Medical Innovation Center (K.N.), Graduate School of Medicine, Kyoto University.

Abstract

Background: During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however. Methods: We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant. Results: We found that cardiac expression of Gα o , an inhibitory G protein encoded in humans by GNAO1 , is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gα o expression increased surface sarcolemmal L-type Ca 2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca 2+ handling in ventricular myocytes, which led to cardiac dysfunction. Conclusions: These findings shed light on a novel function of Gα o in the regulation of cardiac Ca 2+ homeostasis and systolic function and suggest Gα o may be an effective therapeutic target for the treatment of heart failure.

Funder

Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science

Grants-in-Aid for Scientific Research from teh Japanese Society for the promotion of Science

Japan Heart Foundation

Takeda Science Foundation

Uehara Memorial Foundation

SENSHIN Medical Research Foundation

Kondou Kinen Medical Foundation

Japan Agency for Medical Research and Development

British Heart Foundation

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3