Affiliation:
1. BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow.
Abstract
Hypertension remains the largest modifiable cause of mortality worldwide despite the availability of effective medications and sustained research efforts over the past 100 years. Hypertension requires transformative solutions that can help reduce the global burden of the disease. Artificial intelligence and machine learning, which have made a substantial impact on our everyday lives over the last decade may be the route to this transformation. However, artificial intelligence in health care is still in its nascent stages and realizing its potential requires numerous challenges to be overcome. In this review, we provide a clinician-centric perspective on artificial intelligence and machine learning as applied to medicine and hypertension. We focus on the main roadblocks impeding implementation of this technology in clinical care and describe efforts driving potential solutions. At the juncture, there is a critical requirement for clinical and scientific expertise to work in tandem with algorithmic innovation followed by rigorous validation and scrutiny to realize the promise of artificial intelligence-enabled health care for hypertension and other chronic diseases.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献