Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins

Author:

Ohanyan Vahagn1ORCID,Raph Sean M.2,Dwenger Marc M.2ORCID,Hu Xuemei2,Pucci Thomas1,Mack Gregory1,Moore Joseph B.2,Chilian William M.1ORCID,Bhatnagar Aruni2,Nystoriak Matthew A.2ORCID

Affiliation:

1. Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.).

2. Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.).

Abstract

Rationale: Voltage-gated potassium (Kv) channels in vascular smooth muscle are essential for coupling myocardial blood flow (MBF) with the metabolic demand of the heart. These channels consist of a transmembrane pore domain that associates with auxiliary Kvβ (voltage-gated potassium channel β)1 and Kvβ2 proteins, which differentially regulate Kv function in excitable cells. Nonetheless, the physiological role of Kvβ proteins in regulating vascular tone and metabolic hyperemia in the heart remains unknown. Objective: To test the hypothesis that Kvβ proteins confer oxygen sensitivity to vascular tone and are required for regulating blood flow in the heart. Methods and Results: Mice lacking Kvβ2 subunits exhibited suppressed MBF, impaired cardiac contractile performance, and failed to maintain elevated arterial blood pressure in response to catecholamine-induced stress. In contrast, ablation of Kvβ1.1 reduced cardiac workload, modestly elevated MBF, and preserved cardiac function during stress compared with wild-type mice. Coronary arteries isolated from Kvβ2 −/− , but not Kvβ1.1 −/− , mice had severely blunted vasodilation to hypoxia when compared with arteries from wild-type mice. Moreover, vasodilation of small diameter coronary and mesenteric arteries due to L-lactate, a biochemical marker of reduced tissue oxygenation and anaerobic metabolism, was significantly attenuated in vessels isolated from Kvβ2 −/− mice. Inducible enhancement of the Kvβ1:Kvβ2 ratio in Kv1 channels of arterial smooth muscle abolished L-lactate-induced vasodilation and suppressed the relationship between MBF and cardiac workload. Conclusions: The Kvβ proteins differentially regulate vascular tone and MBF, whereby Kvβ2 promotes, and Kvβ1.1 inhibits oxygen-dependent vasodilation and augments blood flow upon heightened metabolic demand.

Funder

HHS | National Institutes of Health

American Heart Association

University of Louisville School of Medicine

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3