MTORC1-Regulated Metabolism Controlled by TSC2 Limits Cardiac Reperfusion Injury

Author:

Oeing Christian U.12ORCID,Jun Seungho2,Mishra Sumita2,Dunkerly-Eyring Brittany L.23,Chen Anna2,Grajeda Maria I.2,Tahir Usman A.4,Gerszten Robert E.4ORCID,Paolocci Nazareno25,Ranek Mark J.2ORCID,Kass David A.23ORCID

Affiliation:

1. Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany, and German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany (C.U.O.).

2. Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.).

3. Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD (B.L.D.-E., D.A.K.).

4. Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (U.A.T., R.E.G.).

5. Department of Biomedical Sciences, University of Padova, Italy (N.P.).

Abstract

Rationale: The mTORC1 (mechanistic target of rapamycin complex-1) controls metabolism and protein homeostasis and is activated following ischemia reperfusion (IR) injury and by ischemic preconditioning (IPC). However, studies vary as to whether this activation is beneficial or detrimental, and its influence on metabolism after IR is little reported. A limitation of prior investigations is their use of broad gain/loss of mTORC1 function, mostly applied before ischemic stress. This can be circumvented by regulating one serine (S1365) on TSC2 (tuberous sclerosis complex) to achieve bidirectional mTORC1 modulation but only with TCS2-regulated costimulation. Objective: We tested the hypothesis that reduced TSC2 S1365 phosphorylation protects the myocardium against IR and is required for IPC by amplifying mTORC1 activity to favor glycolytic metabolism. Methods and Results: Mice with either S1365A (TSC2 SA ; phospho-null) or S1365E (TSC2 SE ; phosphomimetic) knockin mutations were studied ex vivo and in vivo. In response to IR, hearts from TSC2 SA mice had amplified mTORC1 activation and improved heart function compared with wild-type and TSC2 SE hearts. The magnitude of protection matched IPC. IPC requited less S1365 phosphorylation, as TSC2 SE hearts gained no benefit and failed to activate mTORC1 with IPC. IR metabolism was altered in TSC2 SA , with increased mitochondrial oxygen consumption rate and glycolytic capacity (stressed/maximal extracellular acidification) after myocyte hypoxia-reperfusion. In whole heart, lactate increased and long-chain acylcarnitine levels declined during ischemia. The relative IR protection in TSC2 SA was lost by lowering glucose in the perfusate by 36%. Adding fatty acid (palmitate) compensated for reduced glucose in wild type and TSC2 SE but not TSC2 SA which had the worst post-IR function under these conditions. Conclusions: TSC2-S1365 phosphorylation status regulates myocardial substrate utilization, and its decline activates mTORC1 biasing metabolism away from fatty acid oxidation to glycolysis to confer protection against IR. This pathway is also engaged and reduced TSC2 S1365 phosphorylation required for effective IPC. Graphic Abstract: A graphic abstract is available for this article.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

American Heart Association

Deutsche Stiftung für Herzforschung

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3