Gut Microbiota-Associated Activation of TLR5 Induces Apolipoprotein A1 Production in the Liver

Author:

Yiu Jensen H.C.12,Chan Kam-Suen2,Cheung Jamie12,Li Jin134,Liu Yan13,Wang Yao12,Fung William W.L.2,Cai Jieling2,Cheung Samson W.M.12,Dorweiler Bernhard5,Wan Eric Y.F.26ORCID,Tso Patrick7,Xu Aimin123,Woo Connie W.12ORCID

Affiliation:

1. State Key Laboratory of Pharmaceutical Biotechnology (J.H.C.Y., J. Cheung, J.L., Y.L., Y.W., J.Cai, S.W.M.C., A.X., C.W.W.), Li Ka Shing Faculty of Medicine, the University of Hong Kong, China.

2. Department of Pharmacology and Pharmacy (J.H.C.Y., K.-S.C., J. Cheung, Y.W., W.W.L.F., J. Cai, S.W.M.C., E.Y.F.W., A.X., C.W.W.), Li Ka Shing Faculty of Medicine, the University of Hong Kong, China.

3. Department of Medicine (J.L., Y.L., A.X.), Li Ka Shing Faculty of Medicine, the University of Hong Kong, China.

4. Department of Endocrinology, Second Affiliated Hospital, Shanxi Medical University, China (J.L.).

5. Department of Vascular and Endovascular Surgery, University Hospital Cologne, Germany (B.D.).

6. Department of Family Medicine and Primary Care (E.Y.F.W.), Li Ka Shing Faculty of Medicine, the University of Hong Kong, China.

7. Metabolic Phenotyping Center, Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, OH (P.T.).

Abstract

Rationale: Dysbiosis of gut microbiota plays an important role in cardiovascular diseases but the molecular mechanisms are complex. An association between gut microbiome and the variance in HDL-C (high-density lipoprotein-cholesterol) level was suggested in a human study. Besides, dietary fat was shown to increase both HDL-C and LDL-C (low-density lipoprotein-cholesterol) levels. We speculate that certain types of gut bacteria responding to dietary fat may help to regulate HDL-C level and potentially affect atherosclerotic development. Objective: We aimed to investigate whether and how high-fat diet (HFD)-associated gut microbiota regulated HDL-C level. Methods and Results: We found that HFD increased gut flagellated bacteria population in mice. The increase in HDL-C level was adopted by mice receiving fecal microbiome transplantation from HFD-fed mouse donors. HFD led to increased hepatic but not circulating flagellin, and deletion of TLR5 (Toll-like receptor 5), a receptor sensing flagellin, suppressed HFD-stimulated HDL-C and ApoA1 (apolipoprotein A1) levels. Overexpression of TLR5 in the liver of TLR5-knockout mice was able to partially restore the production of ApoA1 and HDL-C levels. Mechanistically, TLR5 activation by flagellin in primary hepatocytes stimulated ApoA1 production through the transcriptional activation responding to the binding of NF-κB (nuclear factor-κB) on Apoa1 promoter region. Furthermore, oral supplementation of flagellin was able to stimulate hepatic ApoA1 production and HDL-C level and decrease atherosclerotic lesion size in apolipoprotein E-deficient ( Apoe −/− ) mice without triggering hepatic and systemic inflammation. The stimulation of ApoA1 production was also seen in human ApoA1-transgenic mice treated with oral flagellin. Conclusions: Our finding suggests that commensal flagellated bacteria in gut can facilitate ApoA1 and HDL-C productions in liver through activation of TLR5 in hepatocytes. Hepatic TLR5 may be a potential drug target to increase ApoA1.

Funder

FHB | Health and Medical Research Fund

Research Grants Council, University Grants Committee

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3