Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency

Author:

Ward Tarsha1,Tai Warren1,Morton Sarah12ORCID,Impens Francis345,Van Damme Petra6,Van Haver Delphi345ORCID,Timmerman Evy345,Venturini Gabriela17ORCID,Zhang Kehan89ORCID,Jang Min Young1,Willcox Jon A.L.1ORCID,Haghighi Alireza11011ORCID,Gelb Bruce D.12,Chung Wendy K.13ORCID,Goldmuntz Elizabeth14,Porter George A.15,Lifton Richard P.1617,Brueckner Martina1618,Yost H. Joseph19,Bruneau Benoit G.20,Gorham Joshua1,Kim Yuri121ORCID,Pereira Alexandre1,Homsy Jason1,Benson Craig C.1,DePalma Steven R.1ORCID,Varland Sylvia222324ORCID,Chen Christopher S.89,Arnesen Thomas222325ORCID,Gevaert Kris5,Seidman Christine11011ORCID,Seidman J.G.1ORCID

Affiliation:

1. Genetics (T.W., W.T., S.M., G.V., M.Y.J., J.A.L.W., A.H., J.G., Y.K., A.P., J.H., C.C.B., S.R.D., C.S., J.G.S.), Harvard Medical School.

2. Division of Newborn Medicine, Boston Children’s Hospital (S.M.).

3. VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium (F.I., D.V.H., E.T., K.G.).

4. VIB Proteomics Core, B-9000 Ghent, Belgium (F.I., D.V.H., E.T.).

5. Biomolecular Medicine (F.I., D.V.H., E.T., K.G.), Ghent University, B-9000 Ghent, Belgium.

6. Biochemistry and Microbiology (P.V.D.), Ghent University, B-9000 Ghent, Belgium.

7. University of Sao Paulo (G.V.).

8. Biomedical Engineering, Boston University, MA (K.Z., C.S.C.).

9. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (K.Z., C.S.C.).

10. Howard Hughes Medical Institute (A.H., C.S.), Harvard Medical School.

11. Medicine, Brigham and Women’s Hospital (A.H., C.S.).

12. Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (B.D.G.).

13. Pediatrics and Medicine, Columbia University Medical Center, New York (W.K.C.).

14. Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.).

15. Pediatrics, University of Rochester Medical Center (G.A.P.).

16. Genetics, Yale University School of Medicine, New Haven (R.P.L., M.B.).

17. Laboratory of Human Genetics and Genomics, Rockefeller University, New York (R.P.L.).

18. Pediatrics, Yale University School of Medicine, New Haven (M.B.).

19. Molecular Medicine Program, University of Utah, Salt Lake City (H.J.Y.).

20. Gladstone Institutes, San Francisco, CA (B.G.B.).

21. Division of Cardiovascular Medicine, Brigham and Women’s Hospital (Y.K.).

22. Biomedicine (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway.

23. Biological Sciences (S.V., T.A.), University of Bergen, N-5020 Bergen, Norway.

24. Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada (S.V.).

25. Surgery, Haukeland University Hospital, N-5021 Bergen, Norway (T.A.).

Abstract

Rationale: NAA15 (N-alpha-acetyltransferase 15) is a component of the NatA (N-terminal acetyltransferase complex). The mechanism by which NAA15 haploinsufficiency causes congenital heart disease remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous loss of function, compound heterozygous, and missense residues (R276W) in iPSCs using CRISPR/Cas9. Haploinsufficient NAA15 iPSCs differentiate into cardiomyocytes, unlike NAA15 -null iPSCs, presumably due to altered composition of NatA. Mass spectrometry analyses reveal ≈80% of identified iPSC NatA targeted proteins displayed partial or complete N-terminal acetylation. Between null and haploinsufficient NAA15 cells, N-terminal acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W induced pluripotent stem cells. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; 18 were ribosomal-associated proteins. At least 4 proteins were encoded by genes known to cause autosomal dominant congenital heart disease. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and N-terminal acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated congenital heart disease. Additionally, genetically engineered induced pluripotent stem cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Fondation Leducq

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3