Single-Cell Transcriptomics Reveals Chemotaxis-Mediated Intraorgan Crosstalk During Cardiogenesis

Author:

Xiong Haiqing123,Luo Yingjie123,Yue Yanzhu1,Zhang Jiejie1,Ai Shanshan1,Li Xin1,Wang Xuelian1,Zhang Yun-Long4,Wei Yusheng5,Li Hui-Hua4,Hu Xinli1,Li Cheng56,He Aibin12

Affiliation:

1. From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China

2. Peking-Tsinghua Center for Life Sciences (H.X., Y.L., A.H.), Peking University, China

3. Academy for Advanced Interdisciplinary Studies (H.X., Y.L.), Peking University, China

4. Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Y.-L.Z., H.-H.L.).

5. School of Life Sciences (Y.W., C.L.), Peking University, China

6. Center for Statistical Science, Center for Bioinformatics (C.L.), Peking University, China

Abstract

Rationale: We hypothesized that the differentiation processes of cardiac progenitor cell (CP) from first and second heart fields (FHF and SHF) may undergo the unique instructive gene regulatory networks or signaling pathways, and the precise SHF progression is contingent on the FHF signaling developmental cues. Objective: We investigated how the intraorgan communications control sequential building of discrete anatomic regions of the heart at single-cell resolution. Methods and Results: By single-cell transcriptomic analysis of Nkx2-5 (NK2 homeobox 5) and Isl1 (ISL LIM homeobox 1) lineages at embryonic day 7.75, embryonic day 8.25, embryonic day 8.75, and embryonic day 9.25, we present a panoramic view of distinct CP differentiation hierarchies. Computational identifications of FHF- and SHF-CP descendants revealed that SHF differentiation toward cardiomyocytes underwent numerous step-like transitions, whereas earlier FHF progressed toward cardiomyocytes in a wave-like manner. Importantly, single-cell pairing analysis demonstrated that SHF-CPs were attracted to and expanded FHF-populated heart tube region through interlineage communications mediated by the chemotactic guidance (MIF [macrophage migration inhibitory factor]-CXCR2 [C-X-C motif chemokine receptor 2]). This finding was verified by pharmacological blockade of this chemotaxis in embryos manifesting limited SHF cell migration and contribution to the growth of the outflow tract and right ventricle but undetectable effects on the left ventricle or heart tube initiation. Genetic loss-of-function assay of Cxcr2 showed that the expression domain of CXCR4 was expanded predominantly at SHF. Furthermore, double knockout of Cxcr2/Cxcr4 exhibited defective SHF development, corroborating the redundant function. Mechanistically, NKX2-5 directly bound the Cxcr2 and Cxcr4 genomic loci and activated their transcription in SHF. Conclusions: Collectively, we propose a model in which the chemotaxis-mediated intraorgan crosstalk spatiotemporally guides the successive process of positioning SHF-CP and promoting primary heart expansion and patterning upon FHF-derived heart tube initiation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3