Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models

Author:

Ni Zhichao1,Deng Jiacheng1,Potter Claire M.F.1,Nowak Witold N.1,Gu Wenduo1,Zhang Zhongyi1,Chen Ting2,Chen Qishan2,Hu Yanhua1,Zhou Bin3,Xu Qingbo12,Zhang Li2

Affiliation:

1. From the School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)

2. Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)

3. State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, China (B.Z.).

Abstract

Rationale: Transplantation-accelerated arteriosclerosis is one of the major challenges for long-term survival of patients with solid organ transplantation. Although stem/progenitor cells have been implicated to participate in this process, the cells of origin and underlying mechanisms have not been fully defined. Objective: The objective of our study was to investigate the role of c-Kit lineage cells in allograft-induced neointima formation and to explore the mechanisms underlying this process. Methods and Results: Using an inducible lineage tracing Kit-CreER;Rosa26-tdTomato mouse model, we observed that c-Kit is expressed in multiple cell types in the blood vessels, rather than a specific stem/progenitor cell marker. We performed allograft transplantation between different donor and recipient mice, as well as bone marrow transplantation experiments, demonstrating that recipient c-Kit + cells repopulate neointimal smooth muscle cells (SMCs) and leukocytes, and contribute to neointima formation in an allograft transplantation model. c-Kit–derived SMCs originate from nonbone marrow tissues, whereas bone marrow-derived c-Kit + cells mainly generate CD45 + leukocytes. However, the exact identity of c-Kit lineage cells contributing to neointimal SMCs remains unclear. ACK2 (anti-c-Kit antibody), which specifically binds and blocks c-Kit function, ameliorates allograft-induced arteriosclerosis. Stem cell factor and TGF (transforming growth factor)-β1 levels were significantly increased in blood and neointimal lesions after allograft transplantation, by which stem cell factor facilitated c-Kit + cell migration through the stem cell factor/c-Kit axis and downstream activation of small GTPases, MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal–regulated kinase)/MLC (myosin light chain), and JNK (c-Jun N-terminal kinase)/c-Jun signaling pathways, whereas TGF-β1 induces c-Kit + cell differentiation into SMCs via HK (hexokinase)-1–dependent metabolic reprogramming and a possible downstream O-GlcNAcylation of myocardin and serum response factor. Conclusions: Our findings provide evidence that recipient c-Kit lineage cells contribute to vascular remodeling in an allograft transplantation model, in which the stem cell factor/c-Kit axis is responsible for cell migration and HK-1–dependent metabolic reprogramming for SMC differentiation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3