LRP1 Deficiency in Vascular SMC Leads to Pulmonary Arterial Hypertension That Is Reversed by PPARγ Activation

Author:

Calvier Laurent1234,Boucher Philippe5,Herz Joachim34678,Hansmann Georg12

Affiliation:

1. From the Department of Pediatric Cardiology and Critical Care (L.C., G.H.), Hannover Medical School, Germany

2. Pulmonary Vascular Research Center (L.C., G.H.), Hannover Medical School, Germany

3. Department of Molecular Genetics (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas

4. Center for Translational Neurodegeneration Research (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas

5. UMR CNRS 7021, University of Strasbourg, Illkirch Cedex, France (P.B.)

6. Department of Neuroscience (J.H.), University of Texas Southwestern Medical Center, Dallas

7. Department of Neurology and Neurotherapeutics (J.H.), University of Texas Southwestern Medical Center, Dallas

8. Department of Neuroanatomy, Center for Neuroscience, Albert-Ludwigs-University, Freiburg, Germany (J.H.).

Abstract

Rationale: Arterial remodeling—a hallmark of many cardiovascular pathologies including pulmonary arterial hypertension (PAH)—is regulated by TGFβ1 (transforming growth factor-β1)–TGFβ receptors and the antagonistic, vasoprotective BMPR2 (bone morphogenetic protein receptor 2)–PPARγ (peroxisome proliferator–activated receptor-γ) axis. However, it is unclear which factors drive detrimental TGFβ1 pathways in the hypertensive pulmonary vasculature. Objective: We hypothesized that LRP1 (low-density lipoprotein receptor–related protein 1) expression is decreased in PAH, leading to enhancement (disinhibition) of TGFβ1 signals and that the PPARγ agonist pioglitazone can restore vascular homeostasis and prevent PAH resulting from LRP1 deletion in vascular smooth muscle cells (SMCs). Methods and Results: Targeted deletion of LRP1 in vascular SMC (smLRP1 −/− ) in mice disinhibited TGFβ1–CTGF (connective tissue growth factor) signaling, leading to spontaneous PAH and distal pulmonary arterial muscularization as assessed by closed-chest cardiac catheterization and anti-αSMA staining. Pioglitazone inhibited the canonical TGFβ1–CTGF axis in human pulmonary artery SMC and smLRP1 −/− main pulmonary artery (CTGF and NOX4) and reversed PAH in smLRP1 −/− mice. TGFβ1 boosted pSmad3 in PASMC from smLRP1 −/− mice versus controls. Pioglitazone-activated PPARγ binds to Smad3 in human pulmonary artery SMC (coimmunoprecipitation), thereby blocking its phosphorylation and overriding LRP1 deficiency. Finally, mRNA and protein expression of LRP1 was decreased in pulmonary plexiform lesions of patients with end-stage idiopathic PAH (laser capture microdissection, qPCR, and immunohistochemistry). Downregulation of LRP1 protein was also demonstrated in explanted PASMC from patients with PAH and accompanied by enhanced TGFβ1–pSmad3–CTGF signaling and increased TGFβ1–induced PASMC proliferation that was prevented by pioglitazone. Conclusions: Here, we identify LRP1 as an integrator of TGFβ1–mediated mechanisms that regulate vascular remodeling in mice and clinical PAH and PPARγ as a therapeutic target that controls canonical TGFβ1 pathways. Hence, pharmacologic PPARγ activation represents a promising new therapy for patients with PAH who lack the vasoprotective LRP1 in vascular SMC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3