Transplantation of Human Umbilical Cord Blood–Derived Cellular Fraction Improves Left Ventricular Function and Remodeling After Myocardial Ischemia/Reperfusion

Author:

Zhao Lin1,Cheng Guangming1,Choksi Kashyap2,Samanta Anweshan3,Girgis Magdy1,Soder Rupal4,Vincent Robert J.4,Wulser Michael4,De Ruyter Matt5,McEnulty Patrick6,Hauptman Jeryl1,Yang Yanjuan1,Weiner Carl P.4,Dawn Buddhadeb1

Affiliation:

1. From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)

2. Cardiology Consultants of South Georgia, Thomasville (K.C.)

3. Department of Internal Medicine (A.S.), University of Missouri-Kansas City

4. Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (R.S., R.J.V., M.W., C.P.W.)

5. Department of Orthopedic Surgery (M.D.R.), University of Missouri-Kansas City

6. Department of Radiology, University of Kansas School of Medicine-Wichita (P.M.).

Abstract

Rationale: Human umbilical cord blood (hUCB) contains diverse populations of stem/progenitor cells. Whether hUCB-derived nonhematopoietic cells would induce cardiac repair remains unknown. Objective: To examine whether intramyocardial transplantation of hUCB-derived CD45 Lin nonhematopoietic cellular fraction after a reperfused myocardial infarction in nonimmunosuppressed rats would improve cardiac function and ameliorate ventricular remodeling. Methods and Results: Nonhematopoietic CD45 Lin cells were isolated from hUCB. Flow cytometry and quantitative polymerase chain reaction were used to characterize this subpopulation. Age-matched male Fischer 344 rats underwent a 30-minute coronary occlusion followed by reperfusion and 48 hours later received intramyocardial injection of vehicle or hUCB CD45 Lin cells. After 35 days, compared with vehicle-treated rats, CD45 Lin cell–treated rats exhibited improved left ventricular function, blunted left ventricular hypertrophy, greater preservation of viable myocardium in the infarct zone, and superior left ventricular remodeling. Mechanistically, hUCB CD45 Lin cell injection favorably modulated molecular pathways regulating myocardial fibrosis, cardiomyocyte apoptosis, angiogenesis, and inflammation in postinfarct ventricular myocardium. Rare persistent transplanted human cells could be detected at both 4 and 35 days after myocardial infarction. Conclusions: Transplantation of hUCB-derived CD45 Lin nonhematopoietic cellular subfraction after a reperfused myocardial infarction in nonimmunosuppressed rats ameliorates left ventricular dysfunction and improves remodeling via favorable paracrine modulation of molecular pathways. These findings with human cells in a clinically relevant model of myocardial ischemia/reperfusion in immunocompetent animals may have significant translational implications.Visual Overview: An online visual overview is available for this article.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3