Orphan GPCR GPRC5C Facilitates Angiotensin II-Induced Smooth Muscle Contraction

Author:

Wang Tianpeng1,Shao Jingchen1ORCID,Kumar Shamit1,Alnouri Mohammad Wessam1ORCID,Carvalho Jorge1ORCID,Günther Stefan2,Krasel Cornelius3ORCID,Murphy Kate T.4,Bünemann Moritz3ORCID,Offermanns Stefan1567ORCID,Wettschureck Nina1567ORCID

Affiliation:

1. Department of Pharmacology (T.W., J.S., S.K., M.W.A., J.C., S.O., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.

2. Bioinformatics and Deep Sequencing Platform (S.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.

3. Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Germany (C.K., M.B.).

4. Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia (K.T.M.).

5. Medical Faculty, Goethe University Frankfurt, Germany (S.O., N.W.).

6. German Center for Cardiovascular Research (DZHK), Frankfurt/Bad Nauheim, Germany (S.O., N.W.).

7. Cardiopulmonary Institute, Frankfurt/Bad Nauheim, Germany (S.O., N.W.).

Abstract

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)–dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II–induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3