Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease

Author:

Ramirez AnnJosette12ORCID,Vyzas Christina A.12,Zhao Huaning1ORCID,Eng Kevin3,Degenhardt Karl4ORCID,Astrof Sophie12ORCID

Affiliation:

1. Department of Cell Biology and Molecular Medicine (A.R., C.A.V., H.Z., S.A.), New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark.

2. Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track (A.R., C.A.V., S.A.), New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark.

3. Department of Statistics, School of Arts and Sciences, Rutgers University, Piscataway, NJ (K.E.).

4. Children’s Hospital of Pennsylvania, Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Philadelphia (K.D.).

Abstract

BACKGROUND: The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS: Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS: The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1 . Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele ( VEGFR2 SHF-HET ) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles ( VEGFR2 SHF-KO ) abolishes it. The decrease in SHF-derived ECs in VEGFR2 SHF-HET and VEGFR2 SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2 SHF-KO mutants. Blocking the compensatory response in VEGFR2 SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1 +/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS: Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3