Cardiovascular Brain Circuits

Author:

Mohanta Sarajo K.12,Yin Changjun13,Weber Christian12ORCID,Godinho-Silva Cristina4,Veiga-Fernandes Henrique4,Xu Qian J.5,Chang Rui B.5ORCID,Habenicht Andreas J.R.12ORCID

Affiliation:

1. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.).

2. German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.).

3. Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.).

4. Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.).

5. Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.).

Abstract

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit–derived and heart-brain circuit–derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3