CNP Ameliorates Macrophage Inflammatory Response and Atherosclerosis

Author:

Bao Qiankun1ORCID,Zhang Bangying1ORCID,Zhou Lu1,Yang Qian1,Mu Xiaofeng1ORCID,Liu Xing1,Zhang Shiying1,Yuan Meng1ORCID,Zhang Yue1,Che Jingjin1,Wei Wen2ORCID,Liu Tong1,Li Guangping1,He Jinlong3ORCID

Affiliation:

1. Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.).

2. Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe (W.W.).

3. Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China (J.H.).

Abstract

BACKGROUND: CNP (C-type natriuretic peptide), an endogenous short peptide in the natriuretic peptide family, has emerged as an important regulator to govern vascular homeostasis. However, its role in the development of atherosclerosis remains unclear. This study aimed to investigate the impact of CNP on the progression of atherosclerotic plaques and elucidate its underlying mechanisms. METHODS: Plasma CNP levels were measured in patients with acute coronary syndrome. The potential atheroprotective role of CNP was evaluated in apolipoprotein E-deficient (ApoE −/− ) mice through CNP supplementation via osmotic pumps, genetic overexpression, or LCZ696 administration. Various functional experiments involving CNP treatment were performed on primary macrophages derived from wild-type and CD36 (cluster of differentiation 36) knockout mice. Proteomics and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS: We observed a negative correlation between plasma CNP concentration and the burden of coronary atherosclerosis in patients. In early atherosclerotic plaques, CNP predominantly accumulated in macrophages but significantly decreased in advanced plaques. Supplementing CNP via osmotic pumps or genetic overexpression ameliorated atherosclerotic plaque formation and enhanced plaque stability in ApoE −/− mice. CNP promoted an anti-inflammatory macrophage phenotype and efferocytosis and reduced foam cell formation and necroptosis. Mechanistically, we found that CNP could accelerate HIF-1α (hypoxia-inducible factor 1-alpha) degradation in macrophages by enhancing the interaction between PHD (prolyl hydroxylase domain–containing protein) 2 and HIF-1α. Furthermore, we observed that CD36 bound to CNP and mediated its endocytosis in macrophages. Moreover, we demonstrated that the administration of LCZ696, an orally bioavailable drug recently approved for treating chronic heart failure with reduced ejection fraction, could amplify the bioactivity of CNP and ameliorate atherosclerotic plaque formation. CONCLUSIONS: Our study reveals that CNP enhanced plaque stability and alleviated macrophage inflammatory responses by promoting HIF-1α degradation, suggesting a novel atheroprotective role of CNP. Enhancing CNP bioactivity may offer a novel pharmacological strategy for treating related diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3