Hepatic Fatty Acid Synthesis Is Suppressed in Mice With Fatty Livers Due to Targeted Apolipoprotein B38.9 Mutation

Author:

Lin Xiaobo1,Schonfeld Gustav1,Yue Pin1,Chen Zhouji1

Affiliation:

1. From the Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Mo.

Abstract

Humans and genetically engineered mice with hypobetalipoproteinemia due to truncation-producing mutations of the apolipoprotein B (apoB) gene frequently have fatty livers, because the apoB defect impairs the capacity of livers to export triglycerides (TGs). We assessed the adaptation of hepatic lipid metabolism in our apoB-38.9-bearing mice. Hepatic TG contents were 2- and 4-fold higher in heterozygous and homozygous mice, respectively, compared with wild-type mice. Respective in vivo hepatic fatty acid synthetic rates were reduced to 40% and 15% of the wild-type rate. Hepatic mRNAs for sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and stearoyl coenzyme A desaturase-1 were coordinately decreased. FAS and SREBP-1c mRNA levels were strongly and positively correlated with each other and inversely correlated with hepatic TGs, suggesting that impaired TG export is a potent inhibitor of fatty acid synthesis. In contrast, levels of plasma β-hydroxybutyrate and of hepatic carnitine palmitoyl transferase and peroxisome proliferator-activated receptor-α mRNAs were not altered, implying that β-oxidation was not affected. Fasting followed by refeeding increased hepatic fatty acid synthesis 56-fold over fasting in normal and heterozygous mice but only 24-fold in homozygous mice. Parallel changes occurred in FAS and SREBP-1c mRNAs. Thus, impairment of very low density lipoprotein export downregulates hepatic fatty acid synthesis, but the adaptation is incomplete, resulting in fatty livers. The signals mediating suppression of FAS and SREBP-1c levels remain to be identified.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3