Role of Nitric Oxide, Adenosine, and ATP-Sensitive Potassium Channels in Insulin-Induced Vasodilation

Author:

McKay Mary K.1,Hester Robert L.1

Affiliation:

1. the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson.

Abstract

The resistance of various tissues to the vasodilator and metabolic effects of insulin may be an important risk factor in the genesis of hypertension observed in several pathological states. Because of this, it is important to understand the mechanisms by which insulin causes vasodilation. Because insulin is known to raise metabolism, one mechanism by which insulin causes vasodilation could be through metabolic vasodilation. Recently, however, it has been suggested that the insulin-induced vasodilation is mediated by the release of endothelium-derived nitric oxide. Using a model of muscle microcirculation (hamster cremaster), we examined the interactions between insulin, nitric oxide, and tissue metabolism to understand the potential mechanisms by which insulin causes vasodilation. Topical application of insulin (200 μU/mL) to the cremaster resulted in significant increases in arteriolar diameter. Second-order arteriolar diameter increased from 69.6±6 to 79.8±5 μm and fourth-order arteriolar diameter from 11.3±1 to 15.1±2 μm (n=8). During nitric oxide synthase inhibition, topical application of insulin caused significant vasodilation in both second- and fourth-order arterioles. In contrast, both adenosine receptor antagonism and blockade of ATP-sensitive potassium channels prevented insulin-induced increases in arteriolar diameter. Our findings suggest a role for increased tissue metabolism, particularly the metabolite adenosine, in mediating insulin-induced vasodilation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3