Myotrophin induces early response genes and enhances cardiac gene expression.

Author:

Mukherjee D P1,McTiernan C F1,Sen S1

Affiliation:

1. Department of Heart and Hypertension Research, Cleveland Clinic Foundation, OH 44195-5071.

Abstract

We have identified and partially sequenced a soluble factor, myotrophin, from spontaneously hypertensive rat hearts and hypertrophic human hearts that enhances myocyte protein synthesis and stimulates myocardial cell growth. Our studies suggest that myotrophin may be a biochemical link between hemodynamic stress and myocardial cellular hypertrophy. When rat neonatal cardiac myocytes maintained in culture were incubated with myotrophin for 30 minutes, they showed a marked increase in c-myc, c-fos, and c-jun messenger RNA levels. Cardiac myocytes treated for 24 hours with myotrophin showed a fourfold increase in connexin 43 (gap junction protein), a sixfold increase in atrial natriuretic factor, a threefold increase in skeletal alpha-actin, and a threefold increase in total myosin transcript levels. Studies on myosin isoforms showed a selective increase in the beta-myosin heavy chain transcript levels but no reciprocal decrease in alpha-myosin heavy chain transcript levels. Our data suggested that myotrophin appears to be a primary modulator for myocardial cell growth and differentiation and may play an important role in the pathogenesis of cardiac hypertrophy. Myotrophin may be involved in the upregulation of myofibrillar protein and the activation of cardiac gene transcription during growth and hypertrophy of the myocardium, and the induction of early response gene expression may be linked to this response.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference40 articles.

1. A factor that initiates myocardial hypertrophy in hypertension.

2. Myotrophin: Purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth;Sen S;J Biol Client,1990

3. Oncogenes and cellular signal transduction

4. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding

5. Role of proto-oncogenes in the control of myocardial cell growth and function;Gammage MD;Gin Sci,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3