Disproportional Arterial Hypertrophy in Hypertensive mRen-2 Transgenic Rats

Author:

Struijker-Boudier Harry A.J.1,van Essen Helma1,Fazzi Gregorio1,De Mey Jo G.R.1,Qiu Hong Ying1,Lévy Bernard I.1

Affiliation:

1. the Department of Pharmacology, Cardiovascular Research Institute Maastricht, University of Limburg (the Netherlands) (H.A.J.S.-B., H. van E., G.F., J.G.R. De M.), and INSERM Unité 141, Hôpital Lariboisière, Paris, France (Y.Q., B.I.L.).

Abstract

In the present study, we investigated the role of enhanced vascular renin-angiotensin activity in vascular hypertrophy. We used transgenic (mRen-2)27 (renin TGR) rats, spontaneously hypertensive rats (SHR), and their respective normotensive control rats to study in situ pressure-diameter relationships in second-generation mesenteric arterial branches (in vivo diameter, 400 to 500 μm) over a pressure range of 0 to 200 mm Hg. We studied pressure-diameter curves under both control (Tyrode's solution) and fully relaxed (Tyrode's solution containing 100 mg/L potassium cyanide) conditions. From these curves, we determined mechanical properties at operating blood pressure. In both hypertensive strains, mesenteric arterial media cross-sectional area was increased, with a significantly ( P <.05) stronger degree of hypertrophy in renin TGR rats. Arterial distensibility of relaxed vessels was decreased to an equal degree in both hypertensive strains. Under control conditions, distensibility was higher in SHR than in renin TGR rats but still significantly reduced compared with distensibility in normotensive rats. Wall tension was increased to an equal degree in both hypertensive strains, whereas circumferential wall stress was normal in SHR but significantly ( P <.05) reduced in renin TGR rats. These results indicate that whereas vascular hypertrophy in SHR causes adaptive normalization of arterial wall stress, enhanced vascular renin-angiotensin activity causes vascular hypertrophy in excess of the hypertrophy associated with pressure elevation alone.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3