The Renal Medulla and Hypertension

Author:

Cowley Allen W.1,Mattson David L.1,Lu Shanhong1,Roman Richard J.1

Affiliation:

1. From the Department of Physiology, Medical College of Wisconsin, Milwaukee.

Abstract

Abstract We review evidence supporting the conclusion that renal dysfunction underlies the development of all forms of hypertension in humans and experimental animals. Indexes of global renal function are generally normal in the early stages of most genetic forms of hypertension, but renal function is clearly impaired in long-established hypertension. Studies in our laboratory over the past decade summarized below have established that the renal medulla plays an important role in sodium and water homeostasis and in the long-term control of arterial pressure. Development of implanted optical fibers for measurement of cortical and medullary blood flows with laser-Doppler flowmetry and techniques for delivery of vasoactive compounds into the medullary interstitial space enabled us to examine determinants of medullary flow (nitric oxide, atrial natriuretic peptides, kinins, eicosanoids, vasopressin, renal sympathetic nerves, etc). We have shown in spontaneously hypertensive rats that the initial changes of renal function begin as a reduction of medullary blood flow in the absence of changes of cortical flow. Long-term medullary interstitial infusion of captopril, which preferentially increased medullary blood flow, resulted in a lowering of arterial pressure. In normal Sprague-Dawley rats, selective reduction of medullary flow with medullary interstitial or intravenous infusion of small amounts of N G -nitro- l -arginine methyl ester resulted in hypertension. These and other studies we review show that although blood flow to the inner renal medulla comprises less than 1% of the total renal blood flow, changes in flow to this region can have a major effect on sodium and water homeostasis and on the long-term control of arterial blood pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3