Adenosine A1Receptor mRNA in Microdissected Rat Nephron Segments

Author:

Yamaguchi Satoshi1,Umemura Satoshi1,Tamura Kouichi1,Iwamoto Tamio1,Nyui Nobuo1,Ishigami Tomoaki1,Ishii Masao1

Affiliation:

1. From the Second Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan.

Abstract

AbstractAdenosine plays several roles in the kidney mediated by the specific receptors A1, A2, and possibly A3. We studied the localization of adenosine A1receptor mRNA in rat nephron segments using reverse transcription and polymerase chain reaction (RT-PCR). The nephron segments of male Sprague-Dawley rats (6 to 8 weeks old) were microdissected. Total RNA was prepared by the acid-guanidinium–phenol–chloroform method and used in the following RT-PCR assay. Because the PCR primers spanned no intron, samples reacted in the absence of RT were used as controls for amplification of genomic DNA. The PCR products were size-fractionated by electrophoresis, visualized with ethidium bromide staining, and confirmed by Southern blot analysis. PCR products were detected in all of the nephron segments examined. No signals were detected in samples reacted in the absence of RT. Strong signals were detected in glomeruli, medullary collecting duct, cortical thick ascending limb, and medullary thick ascending limb, while weak signals were found in proximal convoluted and straight tubules. Previously, the presence of A1receptors has been demonstrated in glomeruli, collecting duct, and thick ascending limb in the rat kidney by autoradiography and binding studies. In addition to these segments, we further detected A1receptor mRNA in proximal convoluted and straight tubules. Thus, A1receptor mRNA seems to be broadly expressed along the nephron.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3