Affiliation:
1. Department of Medicine, University of California, San Francisco 94143-0126.
Abstract
It has recently been proposed that in rat models of genetic hypertension, supplemental dietary potassium preserves release of endothelium-derived relaxing factor independently of its capacity to either attenuate hypertension or increase plasma potassium. To test this hypothesis in Dahl salt-sensitive rats given sodium chloride (4%) for 3 weeks, we supplemented dietary potassium (2.1%) with either KCl (n = 16) or KHCO3 (n = 16). Compared with unsupplemented rats (n = 16), rats supplemented with either potassium salt had a lower mean arterial pressure and a greater release of endothelium-derived relaxing factor, as assessed from acetylcholine-induced relaxation of precontracted aortic rings. However, the maximum relaxation response to acetylcholine correlated inversely with blood pressure (r = -.82, P < .001), not only in the KCl (r = -.68, P < .002) and KHCO3 (r = -.77, P < .001) groups but also in unsupplemented rats (r = -.86, P < .001). With potassium supplementation, plasma potassium concentrations measured between 4 and 6 PM did not increase, but those measured between 4 and 6 AM did increase (P < .05). In isolated ring segments, aortic compliance was greater in both the KCl and KHCO3 groups than in unsupplemented rats (0.015 and 0.017 vs 0.009 mm2/mm Hg) (P < .01). This greater compliance could not be related to differences in blood pressure, plasma potassium, or collagen or elastin content of the aortic wall.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献