Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents.

Author:

Langer S Z,Cavero I,Massingham R

Abstract

This report reviews a number of significant developments in the fields of noradrenergic transmission and adrenergic receptors which suggest that, in addition to the classical postsynaptic adrenoceptors, there are also presynaptic adrenoceptors that help modulate the release of norepinephrine (NE) from peripheral as well as central noradrenergic nerve endings during nerve stimulation. In particular, stimulation of presynaptic alpha-adrenoceptors reduces this release of transmitter and the reverse is observed after blockade of these receptors. Clearcut pharmacological differences exist between the postsynaptic alpha 1-adrenoceptors that mediate the responses of certain organs and the presynaptic alpha 2-adrenoceptors that modulate the NE release during nerve stimulation. Therefore, subclassification of alpha-adrenoceptors into alpha 1 and alpha 2 subtypes is warranted but must be considered to be independent of the anatomical location of these receptors. Some noradrenergic nerve endings have also been shown to possess beta-adrenergic receptors, the stimulation of which increases the quantity of transmitter released by nerve impulses. Physiologically, these receptors could be activated by circulating epinephrine (E) and be involved in essential hypertension. A third type of catecholamine receptor found at the noradrenergic nerve ending is the inhibitory dopamine (DA) receptor, which might be of significance in the development of new antihypertensive agents. Application of these new concepts of noradrenergic neurotransmission and the subclassification of alpha-adrenoceptors to the treatment of hypertension is presented. Clonidine, for example, appears to be a potent alpha 2-adrenoceptor agonist; the central receptor involved in its antihypertensive action is pharmacologically an alpha 2-type but located postsynaptically. Clonidine also induces activation of peripheral presynaptic alpha 2-adrenoceptors, which might contribute to its cardiovascular action. The antihypertensive effects of alpha-methyldopa are related to the formation of alpha-methylnorepinephrine, a preferential alpha 2-adrenoceptor agonist, which can stimulate peripheral presynaptic alpha 2-adrenoceptors leading to a decrease of NE release and a reduction in sympathetic tone. Prazosin is a new antihypertensive agent the mechanism of action of which involves a selective blockade of postsynaptic alpha 1-adrenoceptors. This drug does not antagonize several effects of clonidine that are mediated via alpha 2-adrenoceptors. The mechanisms presently considered to account for the antihypertensive activity of beta-adrenoceptor blocking agents are numerous. It is proposed that blockade of peripheral presynaptic facilitatory beta-adrenoceptors could be of significance in the antihypertensive action of these drugs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3