Role of Nitric Oxide in the Regulation of Coronary Vascular Tone in Hearts From Hypertensive Rats

Author:

Kelm Malte1,Feelisch Martin1,Krebber Thomas1,Deußen Andreas1,Motz Wolfgang1,Strauer Bodo E.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology (M.K., T.K., W.M, B.E.S.), and Department of Physiology (A.D.), Heinrich-Heine Universität Düsseldorf, and the Department of Pharmacology, Schwarz Pharma AG Monheim (M.F.) (Germany).

Abstract

Abstract In arterial hypertension, coronary flow reserve, expressed by the difference between autoregulated and maximal coronary flow, is frequently impaired. Previous experimental and clinical investigations using acetylcholine as a stimulus for the production of endothelium-derived relaxing factor suggested that an impaired endothelium-dependent vasodilation, presumably caused by a decreased formation of nitric oxide (NO), may account for this microvascular dysfunction. However, so far no study has been performed that quantifies the formation of NO within the coronary circulation of hypertensive hearts to assess its role in setting coronary vascular tone in the hypertensive heart. We therefore quantified NO formation within the coronary circulation of constant flow–perfused, isolated hearts from spontaneously hypertensive rats (SHR, 16th to 26th week), as a model for hypertensive heart disease, and from the normotensive control strain (Wistar-Kyoto, WKY) using the oxyhemoglobin technique. Coronary perfusion pressure and vascular resistance were almost 30% higher in SHR compared with WKY hearts. Intracoronarily applied NO decreased coronary vascular resistance by maximally 45% of resting values in a concentration-dependent manner in both groups. The bradykinin-induced decrease in coronary vascular resistance and the parallel increase in NO release were comparable in SHR and WKY hearts and fell within the vasodilator range of exogenously applied NO. Moreover, basal release of NO normalized to heart wet weight was 50% higher in SHR compared with WKY hearts. Rates of basal NO release were correlated inversely with changes in coronary perfusion pressure and vascular resistance in both groups ( r =−.85 and −.84, respectively, P <.05). This relation between resting coronary vascular resistance and NO formation, as a critical determinant of coronary flow, was shifted significantly to higher levels in SHR. From the present data we conclude that in the coronary circulation of SHR, NO formation is preserved under basal and stimulated conditions and critically determines resting coronary resistance. Moreover, the enhanced basal release of NO may serve the purpose of compensating the higher coronary vascular resistance of hypertensive hearts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3