Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat.

Author:

Katholi R E,Naftilan A J,Oparil S

Abstract

In many experimental models, acute increases in sympathetic nervous system activity produce disproportionately greater vasoconstriction in the renal vascular bed than occurs in most other vascular beds. Since increased sympathetic nervous system activity has been implicated in the pathogenesis of DOCA-salt hypertension in the rat, we hypothesized that an attenuation of renal sympathetic tone would delay the development of this form of hypertension. Renal denervation was carried out in 5-week-old uninephrectomized male Sprague-Dawley rats 1 week before beginning DOCA-salt treatment. Systolic blood pressures using the tailcuff method in 32 sham-operated rats were significantly (p less than 0.05) elevated above control by Day five (115 +/- 3 vs 128 +/- 3 mm Hg) of DOCA-salt administration and continued to rise, reaching a plateau by Day 21 (192 +/- 5 mm Hg). In contrast, DOCA-salt administration in 32 renal denervated rats did not result in a significant elevation of blood pressure above control until Day 17 (121 +/- 3 vs 135 +/- 3 mm Hg, p less than 0.05). During the first 2 weeks of DOCA-salt treatment, fractional urinary sodium excretion was significantly greater (p less than 0.05) in renal denervated rats than in sham animals. During the third week of DOCA-salt administration, renal denervated rats had a rapid rise in blood pressure and a fall in fractional urinary sodium excretion to the level of the sham-operated animals. Coincident with the development of hypertension was a threefold increase in renal norepinephrine content (5.3 +/- 0.4 ng/g on Day 14 vs 17.7 +/- 3.0 ng/g on Day 24, p less than 0.01), suggesting reinnervation. These data suggest that increased renal sympathetic tone in the DOCA-salt rat facilitates sodium retention and is necessary for the development of the hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference44 articles.

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3