Cyclosporine produces endothelial dysfunction by increased production of superoxide.

Author:

Diederich D1,Skopec J1,Diederich A1,Dai F X1

Affiliation:

1. Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City 66103.

Abstract

Vasoconstriction and hypertension are major side effects of cyclosporine therapy. The mechanism or mechanisms responsible for the vascular effects of cyclosporine are unclear. The vascular effects of cyclosporine may arise as a consequence of endothelial dysfunction induced by the agent. To test this possibility, we compared in vessels prepared in myographs endothelium-mediated relaxations of mesenteric resistance arteries of Wistar-Kyoto rats treated for 21 to 28 days with subcutaneous injections of cyclosporine (25 mg/kg per day), or vehicle. Endothelium-dependent relaxations in response to acetylcholine were impaired in arteries from cyclosporine-treated rats; the concentrations of acetylcholine required to produce 50% relaxation of norepinephrine activation (pD2) were 31.6 +/- 0.1 versus 5 +/- 0.1 nmol/L in control arteries (P < .05). Nitro-L-arginine produced comparable 10-fold decreases in sensitivity to acetylcholine in arteries from both rat groups, indicating that the relaxations were mediated by endothelium-derived nitric oxide. Acetylcholine-induced relaxations in cyclosporine-treated arteries were normalized by pretreatment of the arteries with superoxide dismutase (150 IU/mL; pD2, 3.6 +/- 0.1; P < .05); superoxide dismutase had no effect on relaxations in control arteries. SQ 29,548, an inhibitor of prostaglandin H2/thromboxane A2 receptors; H-7, an inhibitor of protein kinase C; and indomethacin did not alter relaxations in response to acetylcholine in either group of arteries. Cyclosporine-treated arteries were more sensitive than control arteries to nitroprusside, an agent that induces relaxation via nitric oxide (pD2, 1.3 and 6.2 mumol/L, respectively; P < .05).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3