Hibernation in Noncontracting Mammalian Cardiomyocytes

Author:

Casey Tammy M.1,Arthur Peter G.1

Affiliation:

1. From the Department of Biochemistry, The University of Western Australia, Nedlands, Australia.

Abstract

Background —The aim of the present study was to establish whether isolated neonatal mammalian cardiomyocytes were capable of downregulating energy-using processes other than contraction while maintaining metabolic stability when oxygen availability was reduced. Methods and Results —Metabolic response of cardiomyocytes was investigated under moderate (5 to 6 μmol/L) and severe (2 to 3 μmol/L) forms of hypoxia. Cells exposed to oxygen concentrations of 5 to 6 μmol/L exhibited rates of oxygen consumption, which were decreased to 64% of normoxic rates. Rates of cellular energy usage were decreased because this reduced rate of oxygen consumption was not associated with either decreased intracellular ATP and phosphocreatine concentrations or a compensatory switch to glycolysis. When cells were exposed to oxygen concentrations of 2 to 3 μmol/L, rates of oxygen consumption decreased to 9% of normoxic rates. This decreased rate of oxygen consumption was associated with energetic stress, because a significant switch to glycolysis occurred and intracellular phosphocreatine concentrations were decreased by 40%. Rates of cellular energy usage were further decreased as indicated by stable intracellular ATP concentrations. Conclusions —Our results suggest that isolated cardiomyocytes are capable of downregulating energy-consuming processes other than contraction when oxygen supply is decreased. Regions of myocardial tissue are also capable of downregulating metabolic activity during ischemia by shutting down contractile activity (myocardial hibernation). We suggest that metabolic downregulation associated with myocardial hibernation may not be exclusively due to reduced rates of contractile activity. Other energy-using processes (eg, protein synthesis, mRNA synthesis, ion channel activity, and proton leak) may also be shut down.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3