Affiliation:
1. From the Department of Physiology and Biophysics, Georgetown University, and the Department of Veterans Affairs Medical Center, Washington, DC.
Abstract
Background
—Probability of survival from sudden cardiac arrest caused by ventricular fibrillation (VF) decreases rapidly with fibrillation duration. We hypothesized that cellular ischemia/fibrillation-induced electrophysiological deterioration underlies decreased survival.
Methods and Results
—We determined fibrillation monophasic action potential (MAP) morphology including action potential frequency content, duration, cycle length, developing diastolic intervals, and amplitude as a function of ischemic fibrillation duration in 10 isolated rabbit hearts. We also correlated ECG frequency (used clinically) and MAP amplitude and frequency. Fibrillation cycle length and diastole duration increased, whereas APD
100
shortened significantly with time (
P
<0.001). Between 1 and 3 minutes, diastole appeared primarily as the result of APD
100
shortening, with only small changes in cycle length. Between 2 and 5 minutes, diastole increased primarily as the result of increased cycle length. Diastole developed progressively from 5% of VF cycles at 5 seconds to ≈100% of VF cycles by 120 seconds (
P
<0.001). Diastole increased from 1% of cycle length at 5 seconds to 62% at 5 minutes. Its duration increased from 4.7 ms at 5 seconds to 90 ms at 5 minutes (
P
<0.001). Both MAP and ECG 1/frequency closely correlated with fibrillation cycle length.
Conclusions
—These results show a rapid and progressive electrophysiological deterioration during fibrillation, leading to electrical diastole between fibrillation action potentials. This rapid deterioration may explain the decreased probability of successful resuscitation after prolonged fibrillation. Therefore, a greater understanding of cellular deterioration during fibrillation may lead to improved resuscitation methods, including development of specific defibrillator waveforms for out-of-hospital cardiac arrest.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献