Involvement of Cardiotrophin-1 in Cardiac Myocyte-Nonmyocyte Interactions During Hypertrophy of Rat Cardiac Myocytes In Vitro

Author:

Kuwahara Koichiro1,Saito Yoshihiko1,Harada Masaki1,Ishikawa Masahiro1,Ogawa Emiko1,Miyamoto Yoshihiro1,Hamanaka Ichiro1,Kamitani Shigeki1,Kajiyama Noboru1,Takahashi Nobuki1,Nakagawa Osamu1,Masuda Izuru1,Nakao Kazuwa1

Affiliation:

1. From the Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Abstract

Background —The mechanism responsible for cardiac hypertrophy is currently conceptualized as having 2 components, mediated by cardiac myocytes and nonmyocytes, respectively. The interaction between myocytes and nonmyocytes via growth factors and/or cytokines plays an important role in the development of cardiac hypertrophy. We found that cardiac myocytes showed hypertrophic changes when cocultured with cardiac nonmyocytes. Cardiotrophin-1 (CT-1), a new member of the interleukin-6 family of cytokines, was identified by its ability to induce hypertrophic response in cardiac myocytes. In this study, we used the in vitro coculture system to examine how CT-1 is involved in the interaction between cardiac myocytes and nonmyocytes during the hypertrophy process. Methods and Results —RNase protection assay revealed that CT-1 mRNA levels were 3.5 times higher in cultured cardiac nonmyocytes than in cultured cardiac myocytes. We developed anti–CT-1 antibodies and found that they significantly inhibited the increased atrial and brain natriuretic peptide secretion and protein synthesis characteristic of hypertrophic changes of myocytes in the coculture. In addition, non–myocyte-conditioned medium rapidly elicited tyrosine phosphorylation of STAT3 and induced an increase in natriuretic peptide secretion and protein synthesis in cultured cardiac myocytes; these effects were partially suppressed by anti–CT-1 antibodies. Finally, the hypertrophic effects of CT-1 and endothelin-1, which we had previously implicated in the hypertrophic activity in the coculture, were additive in cardiac myocytes. Conclusions —These results show that CT-1 secreted from cardiac nonmyocytes is significantly involved in the hypertrophic changes of cardiac myocytes in the coculture and suggest that CT-1 is an important local regulator in the process of cardiac hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3