Endothelial Dysfunction in Chronic Myocardial Infarction Despite Increased Vascular Endothelial Nitric Oxide Synthase and Soluble Guanylate Cyclase Expression

Author:

Bauersachs Johann1,Bouloumié Anne1,Fraccarollo Daniela1,Hu Kai1,Busse Rudi1,Ertl Georg1

Affiliation:

1. From the II. Medizinische Klinik, Universitätsklinikum Mannheim, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, and Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main (A.B., R.B.), Germany.

Abstract

Background —Endothelial dysfunction of the peripheral vasculature is a well-known phenomenon in congestive heart failure that contributes to the elevated peripheral resistance; however, the underlying mechanisms have not yet been clarified. Methods and Results —Dilator responses, the expression of protein and mRNA of the endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and soluble guanylate cyclase (sGC), and superoxide anion (O 2 ) and peroxynitrite production were determined in aortic rings from Wistar rats 8 weeks after myocardial infarction and compared with those in sham-operated animals. In rats with heart failure, the concentration-response curve of the endothelium-dependent vasodilator acetylcholine (after preconstriction with phenylephrine) was significantly shifted to the right, and the maximum relaxation was attenuated. Determination of expression levels of the 2 key enzymes for NO-mediated dilations, eNOS and sGC, revealed a marked upregulation of both enzymes in aortas from rats with heart failure, whereas iNOS expression was not changed. Pretreatment with exogenous superoxide dismutase partially restored the acetylcholine-induced relaxation in aortas from rats with heart failure. Aortic basal and NADH-stimulated O 2 production assessed by use of lucigenin-enhanced chemiluminescence was significantly elevated in rats with chronic myocardial infarction. Peroxynitrite-mediated nitration of protein tyrosine residues was not different between the 2 groups of rats. Conclusions —These results demonstrate that endothelial dysfunction in ischemic heart failure occurs despite an enhanced vascular eNOS and sGC expression and can be attributed to an increase in vascular O 2 production by an NADH-dependent oxidase. By inactivation of NO, O 2 production appears to be an essential mechanism for the endothelial dysfunction observed in heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3