Abstract
This study was performed to determine whether hypoxia in glucose-free solutions can increase the electrical resistance of intercellular junctions in ventricular muscle. Internal longitudinal resistance (Ri), mechanical tension, and transmembrane action potentials were measured simultaneously in cow ventricular trabeculae. The mean control value of Ri was 265 +/- 38 omegacm (mean +/- SE) at 34 degrees C. After 1 hour of hypoxia in glucose-free Tyrode's solution, it had increased by 300 +/- 41% (n = 11, P less than 0.001). The rise in Ri was closely related to the increase in resting tension (contracture). These effects were more pronounced during a second exposure to hypoxia and were potentiated by application of epinephrine, by increasing extracellular calcium concentration, and by increasing frequency of stimulation. Addition of glucose (50 mM) provided some protection against hypoxia. It is inferred that the increase in Ri is entirely due to the increase in the resistance of intercellular junctions (electrical uncoupling). Intracellular calcium may be responsible for both the contracture and the uncoupling.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献