The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model.

Author:

Rudy Y,Plonsey R,Liebman J

Abstract

The effects of variations in the volume conductor properties of the torso on the electrocardiogram were studied by means of a theoretical eccentric spheres model. The model includes a blood cavity, cardiac muscle layer, pericardium, lung region, skeletal muscle layer, and subcutaneous fat. The source of the field is a double-layer spherical cap located within the myocardium. The following effects regarding the electrocardiogram (ECG) potentials were determined: (1) blood augments the potential, but less than predicted by simpler published models; (2) in anemia, high potentials are expected, whereas in polycythemia, voltages are reduced; (3) abnormally low lung conductivity (emphysema) causes low surface potentials whose magnitude is controlled by the low conductivity skeletal muscle layer; (4) low voltages result both from low and high pericardial conductivities; (5) the surface potential increases with increasing myocardial conductivity; (6) low skeletal muscle conductivity (Pompe's disease) causes high surface potentials; (7) obesity lowers the potential only slightly; (8) a thick myocardium, protruding into the lung region, slightly augments the potential; (9) an increase in the thickness of the myocardium at the expense of the blood cavity causes a decrease in potential; (10) the potential increases with increasing heart size; and (11) the location of the heart within the torso has a very significant effect on the surface potential distribution.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference21 articles.

1. Changes produced in the resultant "heart" vector by the non-homogeneous volume conductor with normal specific resistivities. Proceedings of the Long Island Jewish Hospital Symposium on Vectorcardiography. Amsterdam;Bayley RH;North-Holland Publishing Co.,1966

2. Changes in the body's QRS surface potentials produced by alterations in certain compartments of the nonhomogeneous conducting model

3. A Theoretical Analysis of Intracavitary Blood Mass Influence on the Heart-Lead Relationship

4. The electrocardiographic diagnosis of pulmonary heart disease

5. Cole KS Curtis HJ: Bioelectricity Electric Physiology. In Medical Physics vol 11 edited by O Glasser. Chicago Year Book Publishers 1944 pp 82-90

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3