Author:
Steenbergen C,Deleeuw G,Barlow C,Chance B,Williamson J R
Abstract
Tissue oxygen gradients were examined in the saline-perfused rat heart by NADH fluorescence photography. In high flow hypoxia, where the coronary flow was maintained and the arterial oxygen tension was gradually reduced, oxygen extraction was virtually complete before oxygen consumption was significantly diminished. Inadequate oxygen delivery resulted in a well defined pattern of anoxic zones. The anoxic zones were several hundred microns in width, an order of magnitude greater than intercapillary distances. In low flow hypoxia (ischemia), where the arterial oxygen tension remained at its control value and the coronary flow was diminished, anoxic zones also developed, following the same pattern as in high flow hypoxia. However, in ischemia, the anoxic areas developed while the effluent oxygen tesion was significantly greater than zero. Whereas respiratory acidosis between pH 7.3 and 6.9 resulted in vasodilation, below PH 6.8 there was a marked increase in vascular resistance. Anoxic zones appeared despite only a slight change in effluent oxygen tension from the control. In high flow hypoxia, ischemia, and acidosis-induced ischemia, the anoxic zones disappeared when control perfusion conditions were restored. The data demonstrate that tissue oxygen gradients are very steep in the hypoxic state, so that ischemia and hypoxia result in discrete heterogeneous areas of anoxic tissue bounded by sharp areas where the oxygen supply is sufficient to maintain normal mitochondrial oxidative function. In these states in which oxygen delivery is less than oxygen demand, coronary perfusion appears to be regulated at the level of the arterioles rather than the capillaries.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献